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ABSTRACT
In this demo, we present an all-in-one real-time system for breath-
ing monitoring and presence detection using statistical acoustic
sensing. By applyingAuto-Correlation Function (ACF) to the Chan-
nel Frequency Response (CFR), our system captures both motion
statistics and breathing rates. We devise novel weight combining
schemes to enhance the SNR of the weak sensing signals. We then
enable human presence detection by integrating both motion sta-
tistics and breathing rate as vital indicators. Our system operates
using a single microphone without relying on a bulky microphone
array. Our demo functions in real-time and supports any device
that is equipped with a commodity microphone and speaker. Our
demo can be accessed through https://youtu.be/JUB6yQ1rQUo

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems; • Human-centered computing → Ubiqui-
tous and mobile computing.
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1 INTRODUCTION
Thevital nature ofmonitoring daily human breathing has garnered
immense attention. The ability to accurately capture and analyze
such data is critical in healthcare, in-car child presence detection
[1], and sleep monitoring.There is a pressing need for reliable non-
contact sensing for capturing breath. Acoustic sensing is a poten-
tial solution due to its widespread availability and practicality. The
rationale lies in that chest and abdomenmotions induced by breath
can be captured by the acoustic channel, usually represented as
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Figure 1: System Framework

Channel Impulse Response (CIR) or its frequency-domain counter-
part, Channel Frequency Response (CFR). To estimate the acous-
tic channel, certain sensing signals are modulated and transmitted
via a speaker, which, during propagation, will reflect off the hu-
man body before being recorded by the microphone. Traditional
approaches usually work by detecting the subject’s reflection at a
single tap in the measured CIR profile, and breathing rate estima-
tion is done by periodicity analysis, e.g., via FFT, of a time series of
the CIR taps. These approaches usually suffer from limited sensing
coverage, in addition to being vulnerable to subject locations and
orientations.

In this demo, we present a novel breath monitoring and pres-
ence detection system via statistical acoustic sensing. Specifically,
we employ the Auto-Correlaton Function (ACF) on acoustic CFR
to acquire presence and breath information in a unified model of
statistical acoustic sensing introduced by VeCare in [1]. The sta-
tistical acoustic sensing model leverages all multipath reflections
that are potentially distorted by the subject for sensing, therefore
promising an enlarged sensing coverage and enhanced robustness.

We demonstrate our demo in a real-time mode, as shown in
Fig. 1. The acoustic transmitter will first broadcast the Kasami se-
quence and signals will be bounced backwhen encountering reflec-
tors. Our system implements a statistical acoustic sensing frame-
work to capture both motion and breathing statistics simultane-
ously, with a single speaker-microphone channel. To boost the ac-
curacy of breathing detection, we perform Maximal-ratio Combin-
ing (MRC) to enhance the SNR of the ACF and leverage a dedicated
peak-finding algorithm. To lower the false alarm rate and enhance
the robustness of presence detection, we employ a decision tree
that integrates breathing and motion data, alongside a duty-ratio
algorithm that optimizes presence reporting. This versatile system
is compatible with any mobile or endpoint device equipped with a
speaker and microphone.
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Figure 2: GUI of Our Demo

2 SYSTEM DESIGN
2.1 Stastical Acoustic Sensing
Normally, the room environment creates a rich multipath effect.
The acoustic signals get reflected by scatterers in the environment.
In general, these scatterers can be then decomposed as dynamic
scatterers and static scatterers, i.e.

𝐻 (𝑓 , 𝑡) =
∑
𝑖∈𝑅𝐷

𝐻𝑖 (𝑓 , 𝑡) +
∑
𝑗∈𝑅𝑆

𝐻 𝑗 (𝑓 , 𝑡) + 𝑁 (𝑓 , 𝑡), (1)

where 𝑅𝐷 and 𝑅𝑆 denote dynamic and static scatters respectively.
𝑁 (𝑓 , 𝑡) represents Additive Gaussian White Noise (AWGN) with
variance 𝜎2𝑁 . Practically, the static part can be removed by sub-
tracting the mean. According to [1], the ACF of 𝐻 (𝑓 , 𝑡) is

𝜌𝐻 (𝑓 , 𝜏) ≜ 𝑔(𝑓 )𝜌𝑏 (𝜏) + 𝑛(𝑓 , 𝜏) (2)
𝑔(𝑓 ) is the motion statistics and 𝜌𝑏 (𝜏) is the ACF of a periodic
signal, which may observe the peak at the periodic point. Thus,
once there is a breath signal, we detect the first prominent peak
of 𝜌𝐻 (𝑓 , 𝜏) and get the time lag 𝜏𝑠 . The breath rate can then be
estimated as 60/𝜏𝑠 BPM.

2.2 Breathing Monitoring
We apply sliding window on 𝐻 (𝑓 , 𝑡) and calculate an ACF matrix
˜𝜌𝐻 (𝑓 , 𝜏, 𝑡) for each window to obtain continuous measurements.
Due to the notably weak reflections from chest movements, the
received signal is not consistently strong, and the peaks are often
not prominent. Consequently, it is necessary to develop a method
to enhance these signals. We adopt normalized motion statistics to
perform Maximal-ratio Combining (MRC). We then get a boosted
version of ACF with the combination of different subcarriers. Af-
terward, we leverage a dedicated peak-finding algorithm to locate
the first peak in the ACF. To alleviate the influence of real-world
fluctuations, we add several constraints for time series, including
using the Hampel filter to remove the outliers and applying inter-
polation to smooth the breathing signals. We depict the breathing
signal on the GUI and demonstrate the breathing rate in real time.

2.3 Presence Detection
𝑔(𝑓 ) is the motion statistics, which have been proven to be a ro-
bust indicator for profile motion dynamics. We use a combination
of breathing rate and motion statistics to detect human presence.
Specifically, we adopt an adaptive threshold filter to determine a
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Figure 3: Experiment Result

threshold 𝜖 for the motion statistics. If 𝑔(𝑓 ) > 𝜖 , it means the mo-
tion is prominent, hereby present. Otherwise, it means the motion
is not that prominent, which can be attributed to two reasons: there
is weak breathing or there are no people present.Therefore, we em-
ploy a decision tree to combine the information of both breathing
rate and motion statistics to judge whether a human is present.
Furthermore, to boost the stability of the system and decrease the
false alarm rate, we adopt a duty-ratio scheme, where we count the
frequency that 𝑔(𝑓 ) is larger than the threshold or the breathing
rate is detected in each sliding window.

3 DEMONSTRATION DETAILS
We use Streamlit to set up a web-based GUI for our system, as
shown in Fig. 2. We use 2-s window to calculate 𝑔(𝑓 ), a 5-s win-
dow to detect presence and a 10-s window to compute breathing
rate. The result would be rendered simultaneously on the screen.
We implement our demo with a MiniDSP UMA-8-SP USB micro-
phone array and PUI AS05308AS-R speaker. We only use one sin-
gle microphone of the array in our experiments. Fig. 3 shows the
experiment plot. Initially, there is no participant. Shortly after, a
participant appears, and starts with a breathing rate of 13 BPM,
which is later elevated to 19 BPM. The experiment concludes as
the participant rises and departs from the scene.
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