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ABSTRACT
This report presents our system on the group project of HKU
COMP3516, Data Analytics for IoT, 2024-25 Sem 2. In the sys-
tem, we successfully implement required functionalities on
board, including Channel State Information (CSI) collection
via buffer, real-time motion detection and breathing rate es-
timation, efficient data transmission over wireless Message
Queuing Telemetry Transport (MQTT) network and real-
time web-application based visualization. Codes are available
at https://github.com/YuyueminAustin/COMP3516-WiFi,
permission granted upon request. A demo video is of free
access at https://drive.google.com/file/d/1mEntCWfMyoa
pCzwKAsR8ixso2U6_kSmq/view?usp=sharing.

1 INTRODUCTION
WiFi Channel State Information (CSI) has been proved to
be capable of capturing the human activity within indoor
environment, due to the interference and superposition of
the electromagnetic waves of the WiFi signals. Moreover, it
is shown that more accurate sensing of humans can be done
by leveraging the multipath effects [2].

Meanwhile, many availableWiFi sensing systems are based
on Intel 5300 network adapters, which may require extensive
labour for hardware setup. In this project, we use ESP32, a
lightweight WiFi CSI tool that is easier to use. Our contri-
butions are following: 1) we implement CSI collection via
hardware buffer instead of naive serial port connection; 2)
we set up a wireless MQTT network, which contains one
broker for hosting the data, one client on ESP32 board for
publishing the data, and one on laptop for subscribing the
data; 3) we implement motion detection and breathing rate
estimation on board in real time; 4) we visualize the data we
receive via web-based frontend application.

2 TECHNICAL PART
2.1 Hardware setups
As mentioned, we implement all of the data collection,
processing, and computation steps on board.

2.1.1 CSI collection.

Buffered data retrieval . In this project, we don’t utilize
the phase angle information of the CSI samples. Therefore,
when we are processing the CSI data, we only keep the am-
plitude information. In other words, if we receive a CSI sam-
ple [𝑟0, 𝑖0, 𝑟1, 𝑖1, 𝑟2, 𝑖2, . . . , 𝑟𝑛, 𝑖𝑛], since the real and imaginary
parts on each subcarrier are paired, we store [(𝑟 𝑗 2 + 𝑖 𝑗 2)] for
each 𝑗 ∈ [1, 2, . . . , 𝑛] where 𝑛 is the number of subcarriers.
In this system, 𝑛 = 56 + 1 = 57 (56 subcarrier pairs + 1 direct
current (DC) component), and the original CSI array admits
length 114 = 57 × 2.

Sliding window buffering with FIFO replacement. Due to
the limited computational resources on board, we adopted
downsampling schemes. The original sampling frequency is
100Hz, which lead to over 800 samples if we set the process-
ing window time to be 8 seconds. However, it is impossible
to store such a large matrix of floats with size 800 × 57 due
to the resource constraint. We thus downsample with 25Hz
sampling rate (implemented by simply discarding 3/4 of the
collected samples). In order to save the CSI samples of the
latest time window for further processing, we also imple-
mented a FIFO scheme instead of directly using the buffer
provided. Specifically, the process is illustrated in Algo. 1.
The processed CSI data is stored in several global vari-

ables in the C program to ensure in-time data retrieval, and
is updated as the sliding window proceeds. The following
are the variables utilized, which correspond to the raw CSI
amplitude samples, the samples with mean components re-
moved, and the selected subcarriers with top-10 gain values
(which will be covered in §2.3).

1 #define NUM_FRAMES 200 // # of buffered CSI arrays

2 #define NUM_SUBCARRIERS 57 // # of subcarriers

3 static float csi_matrix[NUM_FRAMES ][

NUM_SUBCARRIERS ]; // 2D matrix to store CSI

data

4 static float removed_mean_csi[NUM_FRAMES ][

NUM_SUBCARRIERS ]; // 2D matrix to store mean -

removed CSI data

https://github.com/YuyueminAustin/COMP3516-WiFi
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Algorithm 1: FIFO replacement of CSI matrix.
Data: 𝑐𝑠𝑖_𝑚𝑎𝑡𝑟𝑖𝑥 , 𝑓 𝑖𝑙𝑙𝑒𝑑_𝑓 𝑟𝑎𝑚𝑒𝑠 ,

𝑇𝑂𝑇𝐴𝐿_𝐹𝑅𝐴𝑀𝐸𝑆 = 200
/* The number of frames can also be adjusted

to hold different time window lengths. */

Initialization;
while device running do

receive CSI frame F;
if 𝑓 𝑖𝑙𝑙𝑒𝑑_𝑓 𝑟𝑎𝑚𝑒𝑠 < 𝑇𝑂𝑇𝐴𝐿_𝐹𝑅𝐴𝑀𝐸𝑆 then

save F to 𝑐𝑠𝑖_𝑚𝑎𝑡𝑟𝑖𝑥 [𝑓 𝑖𝑙𝑙𝑒𝑑_𝑟𝑜𝑤𝑠] ;
𝑓 𝑖𝑙𝑙𝑒𝑑_𝑓 𝑟𝑎𝑚𝑒𝑠 ++;

else
for 𝑓 𝑟𝑎𝑚𝑒 in 𝑐𝑠𝑖_𝑚𝑎𝑡𝑟𝑖𝑥 do

move 𝑓 𝑟𝑎𝑚𝑒 one row upwards;
end
save F to the last row of 𝑐𝑠𝑖_𝑚𝑎𝑡𝑟𝑖𝑥 ;

end
end

5 static float csi_top10_subcarriers_t [10][

NUM_FRAMES ]; // 2D matrix to store top 10

subcarriers

Listing 1: Global variables for CSI data processing

2.1.2 MQTT network implementation. After the computa-
tion of the breathing rate andmotion statistics, we useMQTT
protocol to send the output data via the wireless connection
between the ESP32 board and the broker. To be specific, the
ESP32 board publish the result to the MQTT Broker instance
on the host laptop, and another MQTT client on host lap-
top is subscribing the messages. The messages received by
the clients are then visualized via the web application. The
overall architecture of the system is illustrated in Fig. 1.

2.2 Motion detection algorithm
The WiDetect motion detection algorithm is based on the
statistical electromagnetic model proposed by [2]. For con-
ciseness, we omit the details of the EM model, but focus on
the motion detection based on the motion statistics.

2.2.1 Preprocessing CSI with motion. Suppose the CSI data
collected is indexed by 𝐻 (𝑡, 𝑓 ), while we omit other param-
eters in the dataframe. The corresponding power response
𝐺 (𝑡, 𝑓 ) = |𝐻 (𝑓 , 𝑡) |2 (c.f. §2.1.1).

We use the sample auto-covariance function𝛾𝐺 (𝜏, 𝑓 )where
𝜏 is the lag (c.f. Eqn. (2) in [2]), which is defined as

𝛾𝐺 (𝜏, 𝑓 ) =
1
𝑇

𝑇∑︁
𝑡=𝜏+1

(𝐺 (𝑡 − 𝜏, 𝑓 ) −𝐺 (𝑓 )) (𝐺 (𝑡, 𝑓 ) −𝐺 (𝑓 )),

where 𝑇 is the number of samples (within a window).

Same wireless network

MQTT client

publish to192.168.30.xxx:1883 

Frontend application
on localhost:5173

MQTT broker 
running……

MQTT client

Subscribe to
localhost:1883

Listen to localhost:8080

Figure 1: The overall architecture of the web-based
system.

2.2.2 Detection rule . The ACF of 𝐺 (𝑡, 𝑓 ) characterized by
the lag 𝜏 > 0 is defined as

𝜌𝐺 (𝜏, 𝑓 ) =
𝛾𝐺 (𝜏, 𝑓 )
𝛾𝐺 (0, 𝑓 )

.

Whenever the calculation of 𝜌𝐺 (𝜏, 𝑓 ) fails (i.e., 𝛾𝐺 (0.𝑓 ) = 0),
we discard this subcarrier. Themotion detection is performed
by hypothesis testing. Denote the set of subcarriers as ℱ,
for each 𝑓 ∈ ℱ, we define the motion statistic as

𝜙 (𝑓 ) = 𝜌𝐺

(
1
𝐹𝑠
, 𝑓

)
.

To perform the following hypothesis testing:

𝐻0 : 𝜙 (𝑓 ) ∼ N (−1/𝑇, 1/𝑇 ), ∀𝑓 ∈ ℱ;

𝐻1 : 𝜙 (𝑓 ) 𝜏→0−−−→ 𝜂 (𝑓 ) > 0, ∀𝑓 ∈ ℱ,

we use the motion statistic estimator

𝜓 = E
[
𝜙 (𝑓 )

]
=

1
|ℱ |

∑︁
𝑓 ∈ℱ

𝜙 (𝑓 ).

The decision rule for motion (1) or static (0) is given by
I
{
𝜓 > 𝜂

}
for an appropriate choice of parameter 𝜂.

2.3 Breathing rate estimation algorithm
Our breathing rate detection (in breathing rate per minute
(BPM)) algorithm resembles the conventional approach, with
modifications to eliminate subcarriers with inferior data.

2.3.1 Weighting with maximum-ratio combination. Given
the power response 𝐺 (𝑡, 𝑓 ), we hope to distinguish those
subcarriers with the most effective data according to some
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specific metric. Following [1], we utilize the Maximum-
Ratio Combination (MRC) to combine the subcarrier data.

To boost the ACF effectiveness, we use the motion statis-
tics (c.f. §2.2.2) as the weight. Specifically, each subcarrier
𝑓 ∈ ℱ is assigned a weight𝑤 𝑓 = 𝜙 (𝑓 )/∑𝑓 ′∈ℱ 𝜙 (𝑓 ′). Finally,
the data on all subcarriers is thus combined to obtain the
MRC ACF 𝜌MRC

𝐺
(𝜏):

𝜌MRC
𝐺 (𝜏) =

∑︁
𝑓 ∈ℱ

𝜙 (𝑓 )∑
𝑓 ′∈ℱ 𝜙 (𝑓 ′)𝛾𝐺 (𝜏, 𝑓 ).

Finally, by routinely detecting the first peak index 𝜏peak ∈ [𝑇 ]
of 𝜌MRC

𝐺
(𝜏), the estimated BPM is given by

�BPM = 60 × 𝐹𝑠

𝜏peak
.

Notably, since the typical BPM of human resides in the in-
terval [8, 30], we can narrow the feasible region of peak
finding to [𝜏min, 𝜏max] ∩ [𝑇 ], where 𝜏min = ⌊60 × 𝐹𝑠

30 ⌋ and
𝜏max = ⌈60 × 𝐹𝑠

8 ⌉.
In our program, we use a find_first_peak function pa-

rameterized by several identities to provide adaptive peak
finding for signals with different shapes. Its prototype (in
app_main.c) is given as follows:

1 int find_first_peak(const float *ACF , float

min_height , int min_width , float prominence ,

int sampling_rate , int window_length);

2 // ACF: input MRC ACF data , min_height: minimum

data value at the peak , min_width: radius of

the neighbor to examine whether a tentative

peak is the maximum value in it, prominence:

minimum prominence of the peak , sampling_rate:

used to determine tau_min and tau_max ,

window_length: size of the window to use to

smooth the data prior to finding the peak.

Listing 2: Our peak finding function prototype.

2.3.2 Improve performance by truncation. In our on-board
test, computing 𝜌MRC

𝐺
(𝜏) can be expensive. Moreover, we

observe that some subcarriers yield negligible (even negative)
motion statistics, which makes it ridiculous to combine them
into the MRC ACF. To this end, we consider a “killing two
birds with one stone” settlement: truncating the ACF data
by only keeping those with the highest𝑀 motion statistics.
We denote the corresponding subcarrier set asℱ𝑀 ⊆ ℱ. In
our code implementation, we apply a bubble sort (since |ℱ |
is small here) on the ACF matrix according to 𝜌𝐺 (1, 𝑓 ), and
replicate the operations on the index set [|ℱ |] to find out the
top𝑀 subcarriers. Unless otherwise stated, we fix𝑀 = 10 in
all the on-board tests (c.f. Listing 1).

3 EVALUATION
3.1 Evaluation result
We conducted the motion detection and breathing rate es-
timation algorithms on board. The devices are deployed on
the table in the computer lab at Room 311, Haking Wong
Building. For details, see Figure 2.

Figure 2: Setup of our on-board test.

The evaluation result is shown in Table 1. We observe that
motion detection is comparatively more robust, whereas
breathing rate estimation is hindered by poor data quality,
sometimes resulting in undetected peaks. The data collection
procedure is the main burden of the performance. Future
work includes resolving this problem by adjusting the device
calibration subject to the testing circumstance geometry.

Table 1: Overall evaluation result.

Evaluation Dataset Result

Motion detection > 80% (outliers removed)
Breathing rate estimation MAE ≈ 2 BPM

3.2 Benchmark result
All benchmark results are computed by running the on-board
algorithms written in C on a Windows laptop with the input
parsed by Python programs. Codes are available at https:
//github.com/HeEntong/COMP3516-Group-Project-Local-
Test-Code.

3.2.1 Motion test. We conduct the motion detection on the
whole benchmark dataset with sampling rate 𝐹𝑠 being 100Hz,
and set the window size to be 200, the step size to be 25, the
lag 𝜏 = 1 (such that it corresponds to exactly 1/𝐹𝑠 in real
time), and the threshold 𝜂 = 0.4. The algorithm reports an

https://github.com/HeEntong/COMP3516-Group-Project-Local-Test-Code
https://github.com/HeEntong/COMP3516-Group-Project-Local-Test-Code
https://github.com/HeEntong/COMP3516-Group-Project-Local-Test-Code
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Table 2: Test result of motion detection. First block:
ground truth = ‘motion’; Second block: ground truth =
‘static’.

File Name Result File Name Result

204932.csv 100% 205301.csv 100%
205318.csv 100% 205330.csv 100%
205343.csv 100% 205356.csv 100%
205406.csv 100% 205439.csv 80%
205451.csv 100% 205504.csv 100%
205516.csv 100% 205526.csv 100%
205539.csv 100% 205553.csv 100%
205607.csv 100% 205624.csv 100%
205637.csv 100% 205645.csv 100%
205654.csv 100% 205704.csv 100%

203408.csv 100% 204824.csv 100%
210608.csv 100% 210623.csv 80%
210645.csv 100% 210747.csv 100%
210802.csv 100% 210814.csv 100%
210840.csv 100% 210854.csv 100%

accuracy of 98% on the “static” benchmarks and 99% on the
“motion” benchmarks. Accuracy is reported in Table 2.

3.2.2 Breathing rate test. We conduct the breathing rate esti-
mation on the downsampled benchmark with 25Hz sampling
rate (take 1 out of every 4 consecutive data frames). During
the data parsing procedure, we observe that the provided
signal is noisy, so we apply a windowed filter with width 4 on
the CSI amplitude data prior to ACF calculation. Moreover,
as the number of estimations of our program might deviate
from that of the provided ground truth, we use the optimal
time horizon alignment with the minimum MAE. Estimation
and ground truth are reported in Figure 3 and Figure 4.

4 CONCLUSION
In this project, we implemented an on-board WiFi sensing
system using ESP32 to capture human motion and breath-
ing rates via Channel State Information (CSI). By leveraging
real-time algorithms for motion detection (> 80% accuracy)
and breathing rate estimation (MAE ≈ 2 BPM) and efficient
MQTT-based data transmission based on buffered data re-
trieval, we demonstrated an end-to-end IoT solution with
real-time web visualization. While challenges such as data
quality and computational constraints impacted the perfor-
mance, the system provides a foundation for future enhance-
ments, including improved calibration and noise reduction.
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Figure 3: Estimated respiration for 191018.csv. Peak
detection parameters: min_height = 0.01, min_width = 4,
prominence = 0.08, window_length = 4.
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Figure 4: Estimated respiration for 193124.csv. Peak
detection parameters: min_height = 0.02, min_width = 2,
prominence = 0.1, window_length = 12.
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